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J. Phys. A: Math. Gen. 18 (1985) 149-164. Printed in Great Britain 

The thermal coherent state and its application to the one- 
dimensional field theory 

Guang-jiong Nit, Jian-jun Xu? and Wei ChenS 
t Modern Physics Institute, Fudan University, Shanghai, China 
$ Physics Department, Huazhong Normal University, Wuhan, China 

Received 6 April 1984 

Abstract. We present a new formulation of the two-fluid model, the thermal coherent state 
for handling the relativistic quantum field theory at finite temperature. 

Three models in one-dimensional space, the I $ ~ ,  sine-Gordon and the Schwinger model, 
are discussed. 

1. Introduction 

In two previous papers (Su er a1 1983, Chen and Ni 1983), to be referred to hereafter 
as I and 11, a method was developed for handling the temperature field theory in 
one-dimensional space. This method, based on the concept of the coherent state and 
treating the quantum fluctuations by the Green function approach, is essentially a 
two-fluid model as summarised in the last section of 11. The coherent state, say qbs, 
cprresponds to the superfluid component and the incoherent part, say the quantised 
II, around dS, to the normal fluid component. A perfect coherent state implies that it 
is at zero temperature. The incoherent thermal fluctuations increase with temperature 
and begin to destroy the long-range order, i.e. the phase correlation, until the latter 
totally vanishes at the critical temperature. 

An alternative formulation, the thermal coherent state, will be presented in 02 
which can be viewed as a mixed ensemble describing the coherent excitation on an 
incoherent background in thermal equilibrium. The concise representation and the 
formulae derived thereby enable us to treat more easily various systems where the 
effect of the coexistence of two components is concerned. We discuss three examples 
in one-dimensional space, the qb4 model, sine-Gordon model and the Schwinger model 
in 00 3, 4 and 5 respectively. Section 6 will be a summary and discussion. Three 
appendices give some mathematical details which are omitted in the text. 

2. The thermal coherent state 

It is known that the coherent state of a neutral scalar field is expressed as ( I ) :  

= N exp( dk/(k)i?+(k))IO) 
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(2.1) 
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with a * c - ( 2 ~ / L ) ” ’ a * ’ ( k ) , f ~  f) ( 2 r / L ) ’ ” f ( k )  in one-dimensional space. The normali- 
sation constant N is chosen so that (flf) = 1 .  The symbol 10) denotes the vacuum state, 
while a*:/O) expresses the one-particle state with momentum k. It is important to 
mention that the mass of the particle, say p, does not need to be fixed as an input 
mass parameter in the original Lagrangian, rather, it can be chosen at our disposal. 
For the relativistic field models we are dealing with in this paper, the most favourable 
choice is setting p equal to the mass of quasiparticles. Being an independent or nearly 
independent elementary excitation of the whole system, the quasiparticle absorbs a 
considerable part of the mutual interactions between ‘original’ particles into its inner 
structure. Therefore the mass of the quasiparticle may be temperature dependent. The 
flexibility of choice of mass parameter for a relativistic field theory at finite temperature 
will be exhibited in the following discussion. 

For a boson system it is 
defined as (Donoghue and Holstein 1983): 

Now let us replace the vacuum state IO) in ( 2 . 1 )  by 

p ( o / a ^ ; a * k ’ / o ) / 3  = 6kk’nk, nk = (ePE, - I ) - ’  ( 2 . 2 )  

where E t  = p2+  k’is  the energy ofthe quasiparticle at temperature T (  = l / p ) .  Equation 
( 2 . 2 )  describes a stationary Bose-Einstein distribution of quasiparticles, the total 
number of which is not fixed so that there is no chemical potential in ( 2 . 2 ) .  Once p 
has been chosen as the mass of the independent quasiparticle, i.e. of the free phonon, 
then as a good approximation, we have: 

( 2 . 3 )  
A +  A +  

p(O/a ,aq lO)p  =p(ol~pa*qlo)p =o.  
It is evident that the definition of IO), shown by the ensemble average ( 2 . 2 )  and 

( 2 . 3 )  implies the existence of a heat bath in thermal equilibrium. The quasiparticles 
constitute an incoherent background on which we can construct further a thermal 
coherent state as 

( 2 . 4 )  

with 

for ensuring 

where the formula 
e * e B  = eBeAe[A.Bl  ( 2 . 7 )  

( [ A ,  B ]  commutes with A and B )  and equations ( 2 . 2 )  and ( 2 . 3 )  have been used. Under 
the same approximation, we can obtain the series of formulae: 

(2.10 

( 2 . 9 )  

(2 .10)  
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(2.12) 

We leave the proof of equation (2.10) to appendix 1. Then by use of the inductive 
method in mathematics, we are able to obtain formulae containing an arbitrary number 
of 2,' and/or 8,: 

( i f k )  s # j , l  

Obviously, the formulae will become even more formidable as m and n get larger. 
But we can derive an elegant formula for scalar field with infinite powers of self- 
interactions (see appendix 2 ) :  

p ( f l :  elgd(x): I f ) p  = exp(-K + G - G*) (2.15) 

wliere 

K = g2 np/2Lw, 
P 

(2.17) 

G = G(x)  = ig c ( ~ L . U ~ ) - ~ / *  eiPx&( 1 + n p ) .  (2.18) 
P 

We shall discuss the use of these formulae in the following sections. 

3. The 44 model in one-dimensional space 

As in the first example, we revisit the real d4 model in one-dimensional space (see 
I ) .  The Lagrangian density reads: 
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while the normal ordered (i.e. renormalised) Hamiltonian is 

(3.2) 

m 2 =  m;-(3g2/.rr) ln(2A/p).  (3.3) 

A +  1 A+ A +  A A 

+4(a*'k ,a*k2a*k,a*k,+  a * f k , a * + k , a - k , a k , ) + 6 6 a - k , a - k z a k , a k , ] ,  

with 

Instead of using the method of the Bogoliubov transformation and introducing the 
temperature by the Green function approach, this time we evaluate the expectation 
value of the Hamiltonian in the thermal coherent directly with the result: 

f( k3) (  + n k 3 )  f(-kl - k 2  - k3)( 1 + 
J w k ,  J W k , i k , + k 3  

k l + k 2 + k 3 )  
X 

where the property o f f (  - p )  =f*( p )  has been used. Introducing 

Y ( P ) =  ( l / J w , ) f ( p ) ( l +  n p )  

and making a Fourier transformation 
s 

y ( p )  = f ( x )  e-lpx dx, 5. 
then the variational condition 

S U / W ( P )  = 0 
will lead to an equation for ?(x) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(d2/dx2)~(x)+(im2-3g2Z3/.rr)~(x) - 4 ~ g ' y ' ~ ( x )  = 0. (3.9) 

The definition of Z3 as well as I, and Z2 are listed in appendix 3. Thus we can get the 
following four kinds of solutions: 

(a)  v'(x) = 0, Y ( P )  = o  (3.10) 

U(a) = ( L / ~ T ) [  Z, ( p p )  T~ + z2(pp ) T~ - t m ' ~ ~  + 3g2~:/2.rr] (3.1 1) 

U(a)  - ( L / 2 ~ ) [ ( 1  + m / 2 T ) T 2  e-""+(3g'/4m)Te-2"7] (3.12) 

U(a)  - T-CS L [ (~ . r r+3g2 /16m2)T2-~mT] .  (3.13) 

r-o 
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At low temperature, this state is unstable against spontaneous symmetry breaking, 
i.e. against the phonon condensation to state (b) (see below). But as the temperature 
increases, looking at the ensemble average of V (  4): 

(3.14) ( ~ " ( 4 ) )  = (3g242 -+m2) = (3g2/7r)1, - t m 2 +  127rg2(y") 

in case (a), 

( VI'( 4))I, = (3g2/ ..)I, -;m2. (3.15) 

We see that there exists a T,, and T >  T,, the expression (3.15) becomes positive, hence 
the state will be stable. One can choose (see I (6.18)) 

P 2 = P : = ( V ( 4 ) ) / T 8 T y '  (3.16) 

At the high-temperature limit (see I (6.13)) 

TI."' = (2m3/943g2){ 1 - (9g2/27rm2)[ln(g2/m2) - 0.09961). (3.17) 

(b) f ( x ) = * M / 2 ( 2 ~ ) ' ' ~ g ,  Y ( P )  = * ( M / g ) ( ~ / 2 ) l ' 2 m )  (3.18) 

U ( b ) =  U(a)-LM4/16g2 (3.19) 

where we choose 

p 2 = p i = ( V " ) l b =  M 2 =  m2-6g21,/7r. (3.20) 

The condition of M > 0 leads to a critical temperature TIP', which is the same as TI."': 

(3.21) 

(c) y'(x) = * [ 1 / 2 ( 2 ~ ) ' ' ~ g l  M tanh i M x  (3.22) 

(3.23) 

(3.24) 

The second term is just the mass of a soliton. In this case, since the condensation is 
not uniform in space, we can still use the expression (3.14) as the choice of p2 but 
with the symbol ( ) also implying the space average. Then 

pf= M2-$M2(sech2;Mx)= M2-6M/L- M2. (3.25) 

TIb' = TI."' = T,. 

y ( p )  = Tig-'("r)''2 cosech 7rp/ M 

U ( C )  = U(b) + M3/3g2. 

L-CC 

The critical temperature is unchanged in the large-L limit 

Tr '  = T,. (3.26) 

(d) There is also a periodic solution expressed by the Jacobi elliptic function 

(3.27) 

(Hammer 1981): 

y'(x) = *( M/2J7rg)k( 1 + k2) 'I2  [sn Mx[2( 1 + k 2 ) ] ] - " 2 ,  

The modulus k is determined by the boundary condition 

ML/J2(  1 + k')"' = 2nK ( k )  (3.28) 

where n, being an integer, may be interpreted as the number of soliton plus antisolitons 
in this system. 

k 2 + 2  M4 J 2 E ( k )  M3 -+ n 
12( 1 + k2)2 g2 ( 1  + k2)I'2 3gz U(d) = U(a)  - L (3.29) 
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where 

d 5  
K ( k )  = l 0 ’ ( 1 - k  2 5 )  2 1 / 2  (1-52)”2 

and 

(3.30) 

(3.31) 

are the complete elliptic integrals of the first and second kind respectively. It is 
interesting to see that the cases (a),  (b) and (c) can all be viewed as a special case of 
(d )  with k = 0; n = 0 and k = 1, n = 1 respectively, noting that sn u l k = l  = tanh U. 

The phonon mass in case (d )  can also be chosen approximately as the space average 
of (3.14) 

k2 
2m2+ 3M2 7 (sn2 2 3g pd = - 1, - 1 

rr l + k  

1 
3 2m 

-_ - 3g2 I - L  2 + -  

rr 
(3.32) 

Let us make a crude numerical analysis. Because K ( k ) (  E (  k)) is a montonic increasing 
(decreasing) function of k within the range 0 s  k s  1, at a certain temperature the 
increase in number of solitons will lead to the decrease of k. There is a maximum 
value of n, say no when k = 0 ,  

no = LM/J:!~. (3.33) 

The quantity 

(3.34) 

is not very sensitive to the change of k. It will arrive at the minimum (most negative) 
value when k + 1 .  Therefore, the system will remain at the state with as few solitons 
as possible so long as it is allowed by the boundary condition. 

4. The sine-Gordon system 

Now we can use the thermal coherent state to discuss the sine-Gordon system with 
simplified calculations (see 11). 

(4.1) ~ = = t ( 2 ~ / a t ) * - t ( a 4 / a x ) ’ + ( m ~ / g 2 )  cos g4 - mi/g2  

%= h . i * [ t ~ 2 + t ( a 4 / a x ) ’ - ( m 2 / g 2 )  cos g4+Do] (4.2) 

Do = m i / g 2 +  (1/8rr) d k  (204 - p 2 / w k )  (4.3) 

m’= mi exp[(g2/4r) ln(p/2A)]. (4.4) 

p ( f l :  cos g4: I f ) @  = e V K  cos ig(;(x)+ ?*(x)) = e -K  cos gi(x) 

Using equation (2.15) and noting K = g21,/2r, we have 

(4.5) 
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where 

f ( x )  = ( l / d ~ )  z(  p )  elpx d p  i 
whereas 

z ( p ) = w , ” * f ( p ) ( l + n , ) .  

The property off(  p )  = f * ( - p )  has been used in the last step of equation (4.5). 
Then it is easy to calculate the energy of the sine-Gordon system as 

U = 5 p ( f l , w - ) p  d x  

= L [ ( I l  + I 2 ) (  T2/27r)+ Do]+f d x  (d f (x ) /dx )*  i 
-(m’/g’) dx eCK cos g i ( x ) .  

We -can derive from the condition 

fiU/Gi(X) = 0 
that 

d*f(x)/dx’-(M’/g) sin g;(x) = O  

M’ = m 2  e - K  = m2 exp( -g ’1~ /2  T )  

where 

(4.8) 

(4.9) 

(4.10) 

(4.1 1 )  

Equation (4.10) is precisely the equation (3.16) in I I f .  There are three kinds of solutions: 

(a)  f ( x )  = nT/g  ( n = O , i 1 , + 2 ,  . . . )  (4.12) 

(4.13) U(a)  = ( L / ~ T ) [ ( z ,  + 1 , ) ~ ’ + 2 . i r ~ , 1 - ( ~ ~ ’ / g ’ ) ( - ) “ .  

As before, the phonon mass p is chosen as 

p ’ = ( V ’ ‘ ( 4 ) )  

= (m’ cos g 4 )  

= M2(cos g i (  x)). 
r 

In case (a), 

p;  = ( - )“M2 

f ( x )  = *(4/g)  tan-’ e*Mx. 

so we see that n should be an even number. 

(b)  
Noting that 

(4.14) 

(4.15) 

COS g?( x )  = 1 - 2 sech’ Mx (4.17) 
we can get the energy of the system as 

U(b )=  U(a )+8M/g2 .  (4.18) 

t Unfortunately, there is a double counting in contractions when evaluating the reduced Hamiltonian (3.9) 
in 11. So (3.12) in I1 has to be corrected as (4.11) here. However the main scheme of I1 remains effective. 
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The second term is just the mass of one soliton (or antisoliton). The phonon mass 
square reads 

(c) There is also a multisoliton solution (Hammer and Shrauner 1984): 

f ( x )  = ( z / g )  cos-'(k sn Mx) (4.20) 

where the modulus k is determined by the boundary condition 

ML = 2nK( k ) .  (4.21) 

The energy of the system is 

U(C) = (L/27r)[(ZI + Z2) T2+27rDO]+ (LM3/gZ)(2kZ- 3) +8nEM/g2 (4.22) 

U(c)-  U(a) = -2( 1 - k 2 )  + 4( E ( k ) /  K ( k ) ) .  
LM2jg2 

(4.23) 

Case (b)  can be viewed as the special case of k = 1 in (c) by noting the relation 
sn uIK=l  = tanh U. 

The mass of phonon can be chosen as (4.14) 

pz = M2[2k2 - 1 - 2k2(cn2 Mx)] 

= M 2 ( l - 2 E / K ) + ~ 2 ,  
k - l  

(4.24) 

There is no critical temperature in any of these cases. 

5. Schwinger model 

The Schwinger model (Schwinger 1962) is defined as the quantum electrodynamics in 
one-dimensional space. The Lagrangian density reads 

psP= $(iyw'a,-eywA, - m ) + - ~ F , v F w Y  (5.1) 

F~~ = J,A, - aA, ( 5 . 2 )  

?'=a3, yl=ia , ,  y 5 = y 0 y l = a I ,  J = + + y 0  (5.3) 

where 

ai (i  = 1, 2, 3) are Pauli matrices. 
The Schwinger model has been investigated by many authors (Brown 1963, Lowen- 

stein and Swieca 1971, Coleman 1975, 1976, Coleman et a1 1975). People often use 
the axial (also Coulomb) gauge A, = 0 and find the solution of A, 

A,(x) = - f e  jo(x')lx - - ' I  d x -  Fx+constant, j, = +++. (5.4) 

One can see that A, is entirely fixed by the distribution of matter charge density j, 
besides a contribution from the background field F. Actually, in one-dimensional 
space, due to the absence of transversal polarisation, there is no independent degree 
of freedom for the electromagnetic field and also no spin for the fermion field. 

I 
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The Hamiltonian can be written as 

H =  dx$( iy ld l+m)+- ie2  {dx dyjo(x)lx-yljo(y)-eF I dxxj,(x)+constant. I 
( 5 . 5 )  

It should be stressed that the fermion version of the Schwinger model suffers from 
some ambiguity in definitions of currents as j’ = $y’$ or j r  = $y’y5$, though they 
are formally conserved. The non-locality of these currents (Wang 1984) proves an 
obstacle when dealing with the phase transition problem as divergence emerges in 
calculations. Fortunately, there is an interesting correspondence between the fermion 
field and the boson field in one-dimensional space (Casher et a1 1973, 1974, Kogut 
and Susskind 1974, 1975, Mandelstam 1975) 

j’-(l /Jr)E+Y aV4, 

i*Y’ a+$-+ d’4 8’4, 

j f  = .s’vjv-(l/Jr) a*+ 
(CI$-2K2: cos 24574: 

(5.6) 

Then the equivalent Hamiltonian for the Schwinger model is 
2 f i 2  X =  N, [;r:+-(-)’+2y2( 1 a4 1 4.A) +Pcos(2Jr+)]  (5.7) 

2 ax 4T 

where 

U = e/ J r ,  e = 2rF /e .  ( 5 . 8 )  

6 2  o - 8 r m K 2 = c p m  - 
N,, represents the normal order with respect to a boson of mass p, and the parameter 

(5.9) 
where c = 2 e’, y = 0.5772 being the Euler constant (Wang 1984). 

the average value of the Hamiltonian in the thermal coherent state. The result is 
Then in the boson version we can easily perform quantisation of the field and take 

dx C O S ( ~ J ~ ~ ( X ) )  
4 r  

where 
f i 2  = fi; e-2r,cr, 

(5.10) 

(5.1 1) 

The function ;(x) is defined as the same as in equation (4.6) and obeys the following 
equation: 

(d2f/dx2) + ( ~ ~ / 2 J r )  sin(2Jrz’) -U’ i+- = 0. ( 2JBJ (5.12) 

A space independent solution of 5(x) can be found by salving the following equation 

sin 2J.rri= ( 2 J r a 2 / f i 2 ) ( i +  e /2J r ) .  (5.13) 

(figure 1): 
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Figure 1. 

We shall always choose the solutions of (5.13) to lie in the interval [-T, T I .  There 
are three roots i?,, i2 and i3 in general. 

The mass square of phonon in a given uniform phase will be evaluated by 

M 2 ( T ) = ( V " ( ~ ) ) = - G ~ ( ~ ~ ~ 2 J ~ q b ) + u 2  

= - G~ COS 2 J T i +  u2. (5.14) 

It is this M which will be adopted as the quantisation mass, i.e. f i  = M. There are 
three different cases which have to be examined. 

(1 )  The massless Schwinger model ( m  = 0) 

This is an exactly soluble case at zero temperature. Now the space independent solution 
of equation (5.12): 

i= -e/2JT (5.15) 

implies that the uniform condensation always screens the background field F. However, 
the condensation is still in a temperature dependent two-fluid state as shown by equation 
(4.7). 

The temperature independent spectrum of the boson is well known 

M 2 =  u2= e 2 / ~  (5.16) 

(2) The massive Schwinger model in the absence of a backgroundfield 
In this case 0 = 0. Equation (5.13) becomes 

The solutions of (5.17) are f 2  = 0, 5, = -&. Notice that 

U(; , )  = U ( q  < U ( 0 ) .  

M ~ (  T )  = - f i 2  COS 2 J T i ,  + u2 > 0. 

and 

Combining (5.19) with (5.17), we have 

W 2  

u2- M 2  tan 2 J ' ~ i  = - (24 Ti) . 

Combining (5.19) with (5.20) and noting G 2  = cMm eK2'3, we have 

M 4 -  (2u2+ c2m2 e-4'3) M 2 +  u4( 1 +4.rri2) = 0. 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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We should determine 5 from (5.17) and substitute it into (5.21) to find M. Two cases 
will be discussed separately. 

(2a) For a weak coupling Schwinger model 

a 2 / m 2 < <  1. (5.22) 

At low temperature, we have approximately 

f3 = &( 1 - a2/fi2). (5.23) 

The solution of (5.21) is? 

M 2 = f [ ( 2 ~ ’ +  c2m2 e-”’)) + (c4m4 e-sr3+4u2~2m2 e-4r3-47r2a4)1’2] (5.24) 

M 2  - a2+ c2m2 - c2m2.  (5.25) 
7-0 U-0 

At the high-temperature limit, f i 2  decreases to zero, 5 + 0  in (5.17), then (5.19) in turn 
gives M =a. There is no critical temperature. The condensation tends to zero only 
at the extremely high-temperature limit. 

(2b) For a strong coupling Schwinger model 

a’/ m’ >> 1. (5.26) 

The condition for a real root for M 2  in (5.21) can only be obtained by demanding 

i=o, (5.27) 

thus no condensation at all. In this case 

~ 2 =  $2a2+ C‘m2 e-45 (c4mm“ e-8’3+4a’c’m’ e-4‘3 1 ‘ 1 2  I. (5 .28)  

By inspecting (5.10), we choose the lower (minus) sign. Then 

M2 - f (2a2  + c2m2 - 2acm e-2r3) (5.29) 
7-0 

M 2  - a 2 + i c 2 m 2  
T-co 

(5.30) 

(3) The massive Schwinger model in the presence of background jield ( 6  # 0 )  
Suppose that O <  6 < n, we need only consider 5, in figure 1 because U(;l) is the lowest 
one in these three phases. 

We have at low temperature 
(3a) Weak coupling case (a2<< m’) 

?, = - i J n [ l - ( a 2 / f i 2 ) ( 1  - 6 / ~ ) ] ,  (5.31) 

The phonon spectrum (5.24) is nearly unchanged in this approximation, but as the 
termperature increases gradually, 5, tends to a limiting value 

lim 2, = -9 /2Jrr .  
7-00 

(5.32) 

It happens to be precisely that situation in the massless case, since this time we have 
again limT+oo f i ’( T )  = 0 and 

lim M2( T )  = u2 
7-00 

(5.33) 

T Another solution of (5.21) has been discarded because i t  is MI2- v 2 u 4 / c 2 m 2  
by inspecting on V’’(6) directly. 

0 being unreasonable 
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as expected. In the high-temperature limit, the pair creation process will prevail over 
the suppression mechanism provided by the rest mass of the fermion until the total 
shielding of the external field is achieved. 

Since the fermion mass can be neglected, it is not surprising that, the stable solution 
of (5.17) and (5.21) implies that the total shielding condition 

(3b) The strong coupling case (U’ >> m’) 

i= -0 j2JV  (5.34) 

must be realised at the low-temperature limit, let alone the high-temperature range. 
But the phonon spectrum is the same as that in the 8 = 0 case as shown by (5 .28) .  

Next, we consider the interval of 8 which lies within (-n, 0). Careful inspection 
of figure 1 reveals the same qualitative results as before. No new feature emerges 
except the choice of one in three roots to ensure the lowest energy. The property of 
the Schwinger model will be a periodical function of 0 with period 27r. 

6. Summary and discussion 

We propose a new representation of the two-fluid model in relativistic field theory, 
the thermal coherent state, in some detail. Whilst one can see that the accuracy of 
calculation in this formulation is the same as that in the Green function approach to 
the lowest order (I  and 11), it does provide the advantage of simplifying the calculation 
and provide more direct insight into the physical problem. 

As the 414 and sine-Gordon models had been discussed in I and 11, in this paper 
we have put most emphasis on the multisoliton solution. Since the multisoliton 
configurations are excited within a nonlinear system, they are highly correlated and 
their locations are fixed by the boundary condition. Being a thermal coherent state, 
a multisoliton configuration carries two components as its inner structure, one is 
essentially coherent and remains at zero temperature and the other incoherent excita- 
tions attached to the former are related to the temperature. To our understanding, 
this picture may be different from that of the ideal gas model of the multisoliton system 
discussed in the literature (Bishop 1981, Maki and Takayama 1979a, b).  We hope that 
further study will clarify this problem and make contact with experimental investiga- 
tions. 

For the Schwinger model, only the space uniform solutions are discussed because 
we cannot find the exact non-uniform solutions for equation (5.12), but by comparing 
the discussion on the (b4 or the sine-Gordon system, we expect no substantial change 
in qualitative behaviour for the Schwinger model even if a non-uniform condensation 
does occur. Although the property of the Schwinger model at zero temperature has 
been examined extensively in the literature, few papers are devoted to its behaviour 
at high temperature. Our results are in conformity with those of Love (1981). 

Finally, let us go back to the problem of mass. In this paper we simply resort to 
the definition of mass M after symmetry breaking as 

where the average is taken with respect to a thermal coherent state with a quantised 
4 field carrying mass p which is set to p = M. Certainly, this is merely a formal 
manipulation for evading more complicated but more fundamental evaluations as used 
in the Green function method which is formidable for the multisoliton system. 
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However, we can get some information about the nature of mass and its relevance to 
the critical temperature. At a certain temperature, the mass of elementary excitations 
(quasiparticles) receives two contributions added together. One is coherent in its 
essential stemming from spontaneously broken symmetry and may be weakly dependent 
on the temperature. The other is incoherent and strongly dependent on the temperature. 
Then a critical temperature may exist above which the symmetry is restored. The 44 
model is a typical example of this type. On the other hand, if the mass consists of 
only one term which is temperature dependent, there will be no critical temperature. 
It is just this case which occurs in the s ineGordon model. The Schwinger model is 
the most complicated case. At zero temperature the boson is actually a bound state 
whose mass comes from the long-range gauge field coupling, because in one- 
dimensional space, the coupling constant e carries a mass dimension. The higher the 
temperature (with dimension of mass), the less important the other mass parameter m 
will be, so no critical temperature exists. A recent investigation on the Higgs mechanism 
in gauge theories will provide some other interesting information about mass (Ni 1984). 
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Appendix 1. The proof of equation (2.10) 

We want to calculate the expectation value of 6;Gq in the thermal coherent state I f ) p  

p( f ld , ' z , l f )p  = N2, (0 /  exp C f k * 6 k  .̂ ,'6, exp f k ' 6 : '  IO), 
( X  ) ( k '  ) 

= ~ '~(0[ (6p++fp*)  exp C f k * &  exp C f k t a k ,  (a*, +f,)Io), 

= ~2 exp( F M~)~(oI(;;+~;) exp f k d : '  exp f z 6 k  (6, + f q ) ~ ~ ) p .  

( X  ) ( k '  A + )  

(Al.1) 

The contraction between 6,' and is yields n,6,, whereas the contraction between 
6:. and 6 k  yields n k & k ' .  Notice, however, there are n !  possibilities of contractions 
between 6:. and 6, in each term containing ( 6 1 ' ) n ( 6 k ) n .  Therefore 

( X '  ) ( k  ) 

(A1.2) 

Furthermore, the contraction between 6; and ak must be accompanied by the contrac- 
tion between 6:. and a,, which results in n,n,fzf , .  Collecting every term together, we 
prove formula (2.10): 

(Al.3) p ( f l 6 ; $ l f ) p  = Spqnp+fp*fq ( l  + n , ) ( l +  n , )  
where equation (2.5) has been used. 
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Appendix 2. The proof of equation (2.15) 

First, we expand eig' in normal order 

(A2.1) 

where 

G" = 1 n [ig(2wqJL)-'/' ei9jx]p(fla*q, . . . ~ ? , ~ l f ) ~  
n 

q l . . .qn  j = I  

= {; [ig(2w9L)-l/2 eiqxfq(l + n,)] , (A2.3) 

J--[ 1 fi [ig(2wp,L)-1/2 e-iplx]( c [ig(2wq,L)-l/2 eiqlxlp(fla*i1 . . . a*ima*qllf)p 
In 

11 

F = 
" = I  m .  p I . . . p m i = l  41 

1 +% C [ig(2wql~)-'/ '  eiqlx][ig(2wq2~)-'/' eiq2x] 

xp(fla*,: . . . a*;ma*,la*,Jf)p + * . . 

9142 

. (A2.4) 

Noticing the formula (2.14) and the definitions of (2.17) and (2.18), we get 

[(-G*)"G+ C;"(-G*)"-I(-K)] 

+-[(-G*)"G'+ c ;"c : ( -G*)~-~( -K)G 
1 
2! 

+ C:C:(2!)(-G*)"-'( -IC)'] 

1 
( m - l ) !  +. . .+- [( -G*)"G"-' + . . . 

+Cz- lCzI ; (n~  - l)!(-G*)(-K)"-'] 
1 

m! 
+-[(-G*)"G"+. . .+ C:-lCK-l(m- l)!(-G*)(-K)"-'G 

+ m!(-K)"] 

1 +- [(-G*)mGmtl+. . .+ CzCz+lm!G(-K)"]+. . . ( m + l ) !  
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where Cy = n !/( n - r ) ! r !  is the combination number. After some algebra, we get 

(A2.6) 

The substitution of (A2.6) into (A2.2) completes the proof of equation (2.15): 

p ( f l :  eig4 : I f )@=exp(-K+G-G*).  (A2.7) 

Appendix 3. Some mathematical formulae 

II = lo" dx x2(x2+ a2)-'/' [exp(x'+ a2) l l z -  11-* = a " - K1(na) (A3.1) 
n = l  n 

lI ( a )  = ( T U /  2) e-" [ 1 + O( 1 / a)] ( a  >> 1) 

( a  ) = &r2 - f TU - ;a'[ln( U /  4 ~ )  + y - f] + O( a4) (a<< 1) 

a2 
- 1]-' = y I ,  = lom dx (x'+ a2)'/'[exp(x2 + [ K 2 (  nu) + KO( nu)] 

n = l  

(A3.2) 

m 

13= l0"dx (x2+a2)-1/2exp(x2+a2)1/2-1)-1= Ko(nu)  (A3.3) 
n = l  

Z , ( a ) = ( ~ / 2 a ) ~ / ~ e - "  [I -1 /8a+0( l /a2) ]  ( a  >> 1) 

where y = 0.577 . . . ; t( z) = 1.20 . . . ; KO, K I  and K 2  are Bessel functions of the imaginary 
argument. 
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